
  

2D Simulation of Rigid Bodies

Alan Hazelden



  

Motivation

 Almost all games involve physics
 Pong, Mario

 Almost all game objects are rigid bodies
 Detailed representation not required



  

Project Goals

 Realistic looking behaviour
 Primitive objects:

 circles
 convex polygons

 Compound bodies
 union of two or more primitive shapes

 Friction



  

Choice of Language

 Written in C++
 Using the Warwick Game Design C++ library

 Sets up the display window and graphics
 Internal database – DOSTE

 Easy saving/loading of objects and world state
 Event handlers
 In-game console



  

Implementation

 Creating and drawing objects
 Collision detection



  

Implementation

 Collision resolution
 Conservation of momentum
 Coefficient of restitution
 No angular movement

 Resting contacts



  

Implementation

 Rotation
 Must ensure that no energy is added to the system

 Resting contacts
 No longer stable
 Problems appear with many stacked objects

 Solution: more contact points
 More time spent processing



  

Implementation

 Friction
 Forces applied at right angles to the contact normal



  

The final result

 Every frame:
 All bodies are moved simultaneously
 The collision detection system is run

 Every pair of colliding bodies is detected and stored
 The collision resolver is run

 Velocities are updated
 Penetration is removed

 All bodies are drawn at their new positions



  

Collision Detection

 Information needed:
 Contact normal
 Contact point
 Penetration distance

 How to get this information?
 Separating Axis Theorem



  

Separating Axis Theorem



  

Conclusions

 What works well
 Collision detection
 Collision response

 What doesn't
 Not easily reusable
 Unstable with large numbers of contacts

 Changes from initial plan
 Resting contacts more complex than expected
 Compound bodies not implemented



  

Possible Extensions

 Compound bodies
 Joints/Springs/Rods
 Simultaneous calculation of collision points
 Smarter algorithms
 3D



  

Demo & Questions


