

Realtime Physics Simulation

Alan Hazelden
4th Year CS student

alan@draknek.org
http://www.draknek.org/

http://www.draknek.org/

What is a physics engine?

 Simulates movement of objects
 Position; orientation
 Velocity; rotational velocity

 Models constraints between objects
 Most common: non-penetration
 Also: joints, friction

What's the point?

 Games
 Almost always need non-penetration
 Almost always need collision detection
 Almost always need collision resolution

 Physics engines
 All of the above and more

Accuracy vs. efficiency

 True physics is computationally ridiculous
 So we simplify things

 Move objects and then resolve problems
 Simplify collision geometry
 ”Sleep” non-moving objects

 If we can fake something, we probably should

Structure of a physics engine

 Broadphase
 Determines which objects could potentially be

colliding

 Generate contacts
 Performs collision detection and finds contacts

 Resolve contacts
 Find new (valid) positions for all objects

Broadphase (collision culling)

 Brute force collision testing would take O(n2)
comparisons

 We can rule some collisions out very quickly
 Bounding boxes
 Exploiting spacial coherence
 Exploiting temporal coherence

Broadphase (collision culling)

 Many implementations:
 Bounding boxes for all pairs
 Regular grid
 Quadtree/Octree
 BSP tree (binary space partitioning)
 Hierarchy of bounding shapes
 Sort and sweep algorithm

Collision detection

 Bad collision detection means bad physics
 Intersection

 Are these two shapes touching?

 Collision
 If these two shapes touch, tell me how and where

Contact generation

 Information generally needed:
 Contact point
 Contact normal
 Amount of penetration

 Available from separating axis test
 For convex shapes
 More complicated algorithms exist

Separating axis test

 Try to find a separating direction
 If there is no such direction, then colliding

Collision resolution

 Resolve contacts so there is no penetration
 In a physically realistic manner!

 Solving one contact may make another worse
 Need to find new positions
 Need to find new velocities

 Apply impulses so they move apart
 Take friction into account

Collision resolution

 Calculating the global solution is difficult
 But apparently you can represent it as a massive

LCP (Linear Complementarity Problem)

 Instead, we iterate over contacts repeatedly
 Converges on global solution (hopefully)

I don't believe it's this easy!

 Of course it isn't.
 Bottlenecks depend on application
 Accuracy required depends on application

 But eventually it works!
 Just don't try it unless you hate yourself

References

Real-Time Collision Detection
Christer Ericson

References

Game Physics
David Eberly

Game Physics Engine Development
Ian Millington

Online resources

 Erin Catto
 http://www.gphysics.com/

 Glenn Fiedler
 http://www.gaffer.org/game-physics

 Wikipedia

http://www.gphysics.com/
http://www.gaffer.org/game-physics

Existing 2D physics engines

 Box2D
 http://www.box2d.org/

 Chipmunk
 http://wiki.slembcke.net/main/published/Chipmunk

 Farseer
 http://www.codeplex.com/FarseerPhysics

 Large Polygon Collider
 http://www.draknek.org/physics/ (soon)

http://www.box2d.org/
http://wiki.slembcke.net/main/published/Chipmunk
http://www.codeplex.com/FarseerPhysics
http://www.draknek.org/physics/

Existing 3D physics engines

 Bullet
 http://www.bulletphysics.com/

 Open Dynamics Engine
 http://www.ode.org/

 Havok
 http://www.havok.com/tryhavok

 Large Polygon Collider
 http://www.draknek.org/physics/ (soon)

http://www.bulletphysics.com/
http://www.ode.org/
http://www.havok.com/tryhavok
http://www.draknek.org/physics/

Questions?

