

Real-Time Physics Simulation

Alan Hazelden

alan@draknek.org
http://www.draknek.org/

http://www.draknek.org/

Who am I?

● Studied Computer Science 2005-2009
– 3rd and 4th year projects: physics engines

● Warwick Game Design exec member
– Participated in many 48 hour competitions

● Probably the best C++ programmer here

Physics in games

● Which games use physics?

Physics in games

● Which games use physics?
– Almost all of them!

– Almost always need non-penetration

– Almost always need collision detection

– Almost always need collision resolution

● A physics engine provides all these
– To some approximation of reality

– But you may not want reality

What is a physics engine?

● Simulates movement of objects
– Position; orientation

– Velocity; rotational velocity

● Models constraints between objects
– Most common: non-penetration

– Also: joints, friction, springs, buoyancy

● Here's one I made earlier...

Accuracy vs. efficiency

● True physics is computationally ridiculous
● So we simplify things

– Move objects and then resolve problems

– Simplify collision geometry

– ”Sleep” non-moving objects

● If we can fake something, we probably
should

Structure of a physics engine

● Broadphase
– Determines which objects could potentially be

colliding

● Generate contacts
– Performs collision detection and finds contacts

● Resolve contacts
– Find new (valid) positions for all objects

Broadphase (collision culling)

● Brute force collision testing would take O(n2)
comparisons

● We can rule some collisions out very quickly
– Bounding boxes

– Exploiting spacial coherence

– Exploiting temporal coherence

Broadphase (collision culling)

● Many implementations:
– Bounding boxes for all pairs

– Regular grid

– Quadtree/Octree

– BSP tree (binary space partitioning)

– Hierarchy of bounding shapes

– Sort and sweep algorithm

Collision detection

● Bad collision detection means bad physics
● Different levels of collision detection:

– Intersection
● Are these two shapes touching?

– Collision
● If these two shapes touch, tell me how and

where

– Temporal collision
● Tell me how, where and also when

Contact generation

● Information generally needed:
– Contact point

– Contact normal

– Amount of penetration

● For convex shapes, I use separating axis
● Concave shapes more complicated

Collision resolution

● Resolve contacts so there is no penetration
– In a physically realistic manner!

● Solving one contact may make another
worse

● Need to find new positions and velocities
– For all objects involved

Creating a physics engine

● Do you hate yourself?
● Do you have several years of your life to

spare?
● Requirements:

– Excellent maths skills

– Excellent programming skills

– Excellent patience

● Incredibly rewarding
– Eventually

References

Real-Time Collision Detection
Christer Ericson

References

Game Physics
David Eberly

Game Physics Engine Development
Ian Millington

Online resources

● Erin Catto
– http://www.gphysics.com/

– Box2D Lite: http://box2d.org/

● Glenn Fiedler
– http://www.gaffer.org/game-physics

● Wikipedia

http://www.gphysics.com/
http://box2d.org/
http://www.gaffer.org/game-physics

2D physics engines

● Box2D
– http://www.box2d.org/

● Chipmunk
– http://wiki.slembcke.net/main/published/Chipmunk

● Farseer
– http://www.codeplex.com/FarseerPhysics

● Large Polygon Collider
– http://www.draknek.org/physics/

http://www.box2d.org/
http://wiki.slembcke.net/main/published/Chipmunk
http://www.codeplex.com/FarseerPhysics
http://www.draknek.org/physics/

3D physics engines

● Bullet
– http://www.bulletphysics.com/

● Open Dynamics Engine
– http://www.ode.org/

● Havok
– http://www.havok.com/tryhavok

● Large Polygon Collider
– http://www.draknek.org/physics/ (awful)

http://www.bulletphysics.com/
http://www.ode.org/
http://www.havok.com/tryhavok
http://www.draknek.org/physics/

Using a physics engine

● Create a world
● Add bodies to world
● Add shapes to bodies
● Add constraints between bodies

● Apply an impulse to a body to move it

Using a physics engine

● Static bodies never move
– Use for level geometry

● Some bodies should not rotate
– Possibly player should always be upright

● Shouldn't add/remove bodies in a callback
● In general, the player should be roughly

one unit tall

Using Box2D: creating a world

b2AABB worldAABB;

worldAABB.lowerBound.Set(-100.0f, -100.0f);

worldAABB.upperBound.Set(100.0f, 100.0f);

b2Vec2 gravity(0.0f, -10.0f);

bool doSleep = true;

b2World world(worldAABB, gravity, doSleep);

Using Box2D: static bodies

b2BodyDef groundBodyDef;

groundBodyDef.position.Set(0.0f, -10.0f);

b2Body* ground =
world.CreateBody(&groundBodyDef);

b2PolygonDef groundShapeDef;

groundShapeDef.SetAsBox(50.0f, 10.0f);

groundBody->CreateShape(&groundShapeDef);

Using Box2D: non-static bodies

b2BodyDef bodyDef;

bodyDef.position.Set(0.0f, 4.0f);

b2Body* body = world.CreateBody(&bodyDef);

b2PolygonDef shapeDef;

shapeDef.SetAsBox(1.0f, 1.0f);

shapeDef.density = 1.0f;

shapeDef.friction = 0.3f;

body->CreateShape(&shapeDef);

body->SetMassFromShapes();

Using Box2D: game loop

float32 timeStep = 1.0f / 60.0f;

int32 iterations = 10;

while (true)

{

 update();

 world.Step(timeStep, iterations);

 draw();

}

Using Box2D: moving bodies

void update ()

{

 b2Vec2 p = body->GetPosition();

 if (Input::left) {

 body->ApplyImpulse(b2Vec2(-1, 0), p);

 }

 If (Input::right) {

 body->ApplyImpulse(b2Vec2(1, 0), p);

 }

}

Using Box2D: drawing bodies

void draw ()

{

 b2Vec2 position = body->GetPosition();

 float32 angle = body->GetAngle();

 drawBox(position, angle);

}

Questions?

<Rapturous applause>

