

Anatomy of a physics engine

Alan Hazelden

alan@draknek.org
http://www.draknek.org/

http://www.draknek.org/

Who am I?

 Studied Computer Science 2005-2009
 3rd and 4th year projects: physics engines

 Now:
 Freelance programmer
 Hobbyist game developer

What is a physics engine?

 Simulates movement of objects
 Position; orientation
 Velocity; rotational velocity

 Models constraints between objects
 Most common: non-penetration
 Also: joints, friction, springs, buoyancy

 Here's one I made earlier...

Demo

(A demo is worth a thousand pictures)

Large Polygon Collider
4th year group project 2008-2009

http://www.draknek.org/physics/

http://www.draknek.org/physics/

What's the point?

 Games
 Almost always need non-penetration
 Almost always need collision detection
 Almost always need collision resolution

 A physics engine provides all these
 To some approximation of reality

 But you may or may not want reality

How does this relate to graphics?

 Same areas of maths
 Vectors
 Matrices

 Some shared algorithms
 Collision pruning/visibility culling
 Point-in-polygon test

 Interactive technology
 Real-time requirements

 Always needs to be faster

Accuracy vs. efficiency

 True physics is computationally ridiculous
 We want plausibility not accuracy
 So for a real-time system we simplify things

 Move objects and then resolve problems
 Simplify collision geometry
 “Sleep” non-moving objects

 If we can fake something, we probably should

Two types of physics engine

 Mass-aggregate systems
 Everything is a particle
 Soft-body physics

 Fluid simulation

 Good for GPUs

 Rigid body simulators
 Everything has position and orientation
 Good for solid objects

Structure of a physics engine

1. Broadphase
 Determines which objects could potentially be

colliding

2. Generate contacts
 Performs collision detection and finds contacts

3. Resolve contacts
 Find new (valid) positions for all objects

1. Broadphase (collision culling)

 Brute force collision testing would take O(n2)
comparisons

 We can rule some collisions out very quickly
 Bounding boxes
 Exploiting spacial coherence
 Exploiting temporal coherence

1. Broadphase (collision culling)

 Many implementations:
 Bounding boxes for all pairs
 Regular grid
 Quadtree/Octree
 BSP tree (binary space partitioning)
 Hierarchy of bounding shapes
 Sort and sweep algorithm

2. Collision detection

 Bad collision detection means bad physics
 Different levels of collision detection:

 Intersection
 Are these two shapes touching?

 Collision
 If these two shapes touch, tell me how and where

 Temporal collision
 Tell me how, where and also when

2. Contact generation

 Information generally needed:
 Contact point
 Contact normal
 Amount of penetration

 For convex shapes in 2D, this isn't too hard
 Concave shapes more difficult
 3D much more difficult

3. Collision resolution

 Remove penetration

3. Collision resolution

 Remove penetration
 Calculate new velocities

3. Collision resolution

 Remove penetration
 Calculate new velocities

 Apply impulse at contact
 Conservation of momentum
 Coefficient of restitution

3. Collision resolution

 Remove penetration
 Calculate new velocities

 Apply impulse at contact
 Conservation of momentum
 Coefficient of restitution
 Includes rotation

3. Collision resolution

 Remove penetration
 Calculate new velocities

 Apply impulse at contact
 Conservation of momentum
 Coefficient of restitution
 Includes rotation
 Includes friction

3. Collision resolution

 Remove penetration
 Calculate new velocities

 Apply impulse at contact
 Conservation of momentum
 Coefficient of restitution
 Includes rotation
 Includes friction
 All at once

3. Collision resolution

 So we can resolve each contact
 But solving one may make another worse
 Could solve simultaneously

 Build a massive LCP matrix
 But not in real-time

 Instead, iterate over contacts repeatedly
 Converge on global solution
 Can balance computation time against accuracy

Putting it all together

 Every frame:
 All bodies are moved simultaneously
 Pairs of potentially colliding bodies are detected
 Detailed contact information is generated
 The collision resolver is run

 Velocities are updated
 Penetration is removed

 All bodies are drawn at their new positions

Creating a physics engine

 Do you hate yourself?
 Do you have several years of your life to spare?
 Requirements:

 Excellent maths skills
 Excellent programming skills
 Excellent patience

 Incredibly rewarding
 Eventually

References

Real-Time Collision Detection
Christer Ericson

References

Game Physics
David Eberly

Game Physics Engine Development
Ian Millington

Online resources

 Erin Catto
 http://www.gphysics.com/
 Box2D Lite: http://box2d.org/

 Glenn Fiedler
 http://www.gaffer.org/game-physics

 Chris Hecker
 http://chrishecker.com/Rigid_Body_Dynamics

 Thomas Jakobsen
 http://www.teknikus.dk/tj/gdc2001.htm

http://www.gphysics.com/
http://box2d.org/
http://www.gaffer.org/game-physics
http://chrishecker.com/Rigid_Body_Dynamics
http://www.teknikus.dk/tj/gdc2001.htm

2D physics engines

 Box2D
 http://www.box2d.org/

 Chipmunk
 http://wiki.slembcke.net/main/published/Chipmunk

 Farseer
 http://www.codeplex.com/FarseerPhysics

 Large Polygon Collider
 http://www.draknek.org/physics/

http://www.box2d.org/
http://wiki.slembcke.net/main/published/Chipmunk
http://www.codeplex.com/FarseerPhysics
http://www.draknek.org/physics/

3D physics engines

 Bullet
 http://www.bulletphysics.com/

 Open Dynamics Engine
 http://www.ode.org/

 Havok
 http://www.havok.com/tryhavok

 Large Polygon Collider
 http://www.draknek.org/physics/ (awful)

http://www.bulletphysics.com/
http://www.ode.org/
http://www.havok.com/tryhavok
http://www.draknek.org/physics/

Questions?

P.S. come to my other talk

Learning through failure
Why you're not making enough games

Warwick Game Design
S0.28, Social Studies

6:00 PM today

