

Anatomy of a physics engine

Alan Hazelden
alan@draknek.org

http://www.draknek.org/

http://www.draknek.org/

Who am I?

 Studied Computer Science 2005-2009
 3rd and 4th year projects: physics engines

 Making games since 2006
 Joined Warwick Game Design

 Now:
 Part-time game developer
 Part-time web developer

 More Alan facts at www.draknek.org

http://www.draknek.org/

My games

 These Robotic Hearts of Mine

Narrative-based puzzle game

http://www.draknek.org/games/hearts/

http://www.draknek.org/games/hearts/

My games

 Sokobond

Chemistry-themed puzzle game

http://www.sokobond.com/

http://www.sokobond.com/

Also

 Current maintainer for FlashPunk

Popular open-source flash game engine

http://www.flashpunk.net/

http://www.flashpunk.net/

What is a physics engine?

 Simulates movement of objects
 Position; orientation
 Velocity; rotational velocity

 Models constraints between objects
 Most common: non-penetration
 Also: joints, friction, springs, buoyancy

 Here's one I made earlier...

Demo

(A demo is worth a thousand pictures)

Large Polygon Collider
4th year group project 2008-2009

http://lpc.draknek.org/

http://lpc.draknek.org/

What's the point?

 Games
 Almost always need non-penetration
 Almost always need collision detection
 Almost always need collision resolution

 A physics engine provides all these
 To some approximation of reality
 But you may or may not want reality

How does this relate to graphics?

 Same areas of maths
 Vectors
 Matrices

 Some shared algorithms
 Collision pruning/visibility culling
 Point-in-polygon test

 Interactive technology
 Real-time requirements
 Always needs to be faster

Accuracy vs. efficiency

 True physics is computationally ridiculous
 We want plausibility not accuracy
 So for a real-time system we simplify things

 Move objects and then resolve problems
 Simplify collision geometry
 “Sleep” non-moving objects

 If we can fake something, we probably should

Two types of physics engine

 Mass-aggregate systems
 Everything is a particle
 Soft-body physics
 Fluid simulation
 Good for GPUs

 Rigid body simulators
 Everything has position and orientation
 Good for solid objects

Structure of a physics engine

1. Broadphase
 Determines which objects could potentially be

colliding

2. Generate contacts
 Performs collision detection and finds contacts

3. Resolve contacts
 Find new (valid) positions for all objects

1. Broadphase (collision culling)

 Brute force collision testing would take O(n2)
comparisons

 We can rule some collisions out very quickly
 Bounding boxes
 Exploiting spacial coherence
 Exploiting temporal coherence

2. Collision detection

 Bad collision detection means bad physics
 Different levels of collision detection:

 Intersection
 Are these two shapes touching?

 Collision
 If these two shapes touch, tell me how and where

 Temporal collision
 Tell me how, where and also when

3. Collision Resolution

 Given the collision information:
 Find the new state of all bodies
 New velocities
 New positions

 In a particle system (no rotation), simple:
 Conservation of momentum
 Coefficient of restitution

Broadphase (collision culling)

 Many implementations:
 Bounding boxes for all pairs
 Regular grid
 Quadtree/Octree
 BSP tree (binary space partitioning)
 Hierarchy of bounding shapes
 Sort and sweep algorithm

Intersection tests

 Point in circle

d < r

d > r

Intersection tests

 Point in circle
 Point in AABB

xmin < x < xmax

ymin < y < ymax

Intersection tests

 Point in circle
 Point in AABB
 Point in OBB ymin < ylocal < ymax

xmin < xlocal < xmax

Intersection tests

 Point in circle
 Point in AABB
 Point in OBB
 Point in convex polygon

Intersection tests

 Point in circle
 Point in AABB
 Point in OBB
 Point in convex polygon
 Point in concave polygon

odd = inside

1

1 2

even = outside

Intersection tests

 Point in circle
 Point in AABB
 Point in OBB
 Point in convex polygon
 Point in concave polygon
 Circle-circle d < r1 + r2

Intersection tests

 Point in circle
 Point in AABB
 Point in OBB
 Point in convex polygon
 Point in concave polygon
 Circle-circle
 AABB-AABB

Contact generation

 Information generally needed:
 Contact point
 Contact normal
 Amount of penetration

 For convex shapes in 2D, this isn't too hard
 Concave shapes more difficult
 3D much more difficult

Collision resolution

 Remove penetration

Collision resolution

 Remove penetration
 Calculate new velocities

Collision resolution

 Remove penetration
 Calculate new velocities

 Apply impulse at contact
 Conservation of momentum
 Coefficient of restitution

Collision resolution

 Remove penetration
 Calculate new velocities

 Apply impulse at contact
 Conservation of momentum
 Coefficient of restitution
 Includes rotation

Collision resolution

 Remove penetration
 Calculate new velocities

 Apply impulse at contact
 Conservation of momentum
 Coefficient of restitution
 Includes rotation
 Includes friction

Collision resolution

 Remove penetration
 Calculate new velocities

 Apply impulse at contact
 Conservation of momentum
 Coefficient of restitution
 Includes rotation
 Includes friction
 All at once

Collision resolution

 So we can resolve each contact
 But solving one may make another worse
 Could solve simultaneously

 Build a massive LCP matrix
 But not in real-time

 Instead, iterate over contacts repeatedly
 Converge on global solution
 Can balance computation time against accuracy

Putting it all together

 Every frame:
 All bodies are moved simultaneously
 Pairs of potentially colliding bodies are detected
 Detailed contact information is generated
 The collision resolver is run

 Velocities are updated
 Penetration is removed

 All bodies are drawn at their new positions

Forget everything
I just said.

Forget everything I just said

 That's all fairly useless information
 You shouldn't make your own physics engine!
 Box2D already exists

 My perspective as a game developer
 A lot of this module is not that useful
 It's been done for you

Anatomy of a physics engine

Anyone can make games,
you should make games!

Alan Hazelden
alan@draknek.org

http://www.draknek.org/

http://www.draknek.org/

It's easy to make games

 The tools are amazing
 FlashPunk
 Unity
 Stencyl
 Twine
 Box2D

It's fun to make games

 What if...
 You made the snakes in Snake poop
 The paddles in Pong were shaped like continents
 Breakout blocks had to be kept onscreen
 Seeing an enemy made you run away
 Tetris blocks had an underground fight scene
 You had a deathmatch game with invisible players

It's fun to make games

 What if...
 You could only move one step per day
 2 players each had a microphone controlling speed
 You had to hold your breath while underwater
 A typing game gave increasingly morbid sentences
 A guitar hero game had only one button
 You had a videogame that didn't use the screen

Bear in mind

 Your first game will probably suck
 And that's okay!
 Make it terrible in a way that is awesome

 Don't be too ambitious
 Make the simplest possible thing
 Don't do everything from scratch

 Particles cover a multitude of sins
 So does screen shake!

MAKE GAMES

Questions?

I want to create a physics engine!

 Do you hate yourself?
 Do you have several years of your life to spare?
 Requirements:

 Excellent maths skills
 Excellent programming skills
 Excellent patience

 Incredibly rewarding
 Eventually

References

Real-Time Collision Detection
Christer Ericson

References

Game Physics
David Eberly

Game Physics Engine Development
Ian Millington

Online resources

 Erin Catto
 http://www.gphysics.com/
 Box2D Lite: http://box2d.org/

 Glenn Fiedler
 http://www.gaffer.org/game-physics

 Chris Hecker
 http://chrishecker.com/Rigid_Body_Dynamics

 Thomas Jakobsen
 http://www.teknikus.dk/tj/gdc2001.htm

http://www.gphysics.com/
http://box2d.org/
http://www.gaffer.org/game-physics
http://chrishecker.com/Rigid_Body_Dynamics
http://www.teknikus.dk/tj/gdc2001.htm

2D physics engines

 Box2D
 http://www.box2d.org/

 Chipmunk
 http://wiki.slembcke.net/main/published/Chipmunk

 Farseer
 http://www.codeplex.com/FarseerPhysics

 Large Polygon Collider
 http://www.draknek.org/physics/

http://www.box2d.org/
http://wiki.slembcke.net/main/published/Chipmunk
http://www.codeplex.com/FarseerPhysics
http://www.draknek.org/physics/

3D physics engines

 Bullet
 http://www.bulletphysics.com/

 Open Dynamics Engine
 http://www.ode.org/

 Havok
 http://www.havok.com/tryhavok

 PhysX
 https://developer.nvidia.com/physx

http://www.bulletphysics.com/
http://www.ode.org/
http://www.havok.com/tryhavok
https://developer.nvidia.com/physx

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47

