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Who am I?

 Studied Computer Science 2005-2009
 3rd and 4th year projects: physics engines

 Making games since 2006
 Joined Warwick Game Design

 Now:
 Part-time game developer
 Part-time web developer

 More Alan facts at www.draknek.org

http://www.draknek.org/


  

My games

 These Robotic Hearts of Mine

Narrative-based puzzle game

http://www.draknek.org/games/hearts/

http://www.draknek.org/games/hearts/


  

My games

 Sokobond

Chemistry-themed puzzle game

http://www.sokobond.com/

http://www.sokobond.com/


  

Also

 Current maintainer for FlashPunk

Popular open-source flash game engine

http://www.flashpunk.net/

http://www.flashpunk.net/


  

What is a physics engine?

 Simulates movement of objects
 Position; orientation
 Velocity; rotational velocity

 Models constraints between objects
 Most common: non-penetration
 Also: joints, friction, springs, buoyancy

 Here's one I made earlier...



  

Demo

(A demo is worth a thousand pictures)

Large Polygon Collider
4th year group project 2008-2009

http://lpc.draknek.org/

http://lpc.draknek.org/


  

What's the point?

 Games
 Almost always need non-penetration
 Almost always need collision detection
 Almost always need collision resolution

 A physics engine provides all these
 To some approximation of reality
 But you may or may not want reality



  

How does this relate to graphics?

 Same areas of maths
 Vectors
 Matrices

 Some shared algorithms
 Collision pruning/visibility culling
 Point-in-polygon test

 Interactive technology
 Real-time requirements
 Always needs to be faster



  

Accuracy vs. efficiency

 True physics is computationally ridiculous
 We want plausibility not accuracy
 So for a real-time system we simplify things

 Move objects and then resolve problems
 Simplify collision geometry
 “Sleep” non-moving objects

 If we can fake something, we probably should



  

Two types of physics engine

 Mass-aggregate systems
 Everything is a particle
 Soft-body physics
 Fluid simulation
 Good for GPUs

 Rigid body simulators
 Everything has position and orientation
 Good for solid objects



  

Structure of a physics engine

1. Broadphase
 Determines which objects could potentially be 

colliding

2. Generate contacts
 Performs collision detection and finds contacts

3. Resolve contacts
 Find new (valid) positions for all objects



  

1. Broadphase (collision culling)

 Brute force collision testing would take O(n2) 
comparisons

 We can rule some collisions out very quickly
 Bounding boxes
 Exploiting spacial coherence
 Exploiting temporal coherence



  

2. Collision detection

 Bad collision detection means bad physics
 Different levels of collision detection:

 Intersection
 Are these two shapes touching?

 Collision
 If these two shapes touch, tell me how and where

 Temporal collision
 Tell me how, where and also when



  

3. Collision Resolution

 Given the collision information:
 Find the new state of all bodies
 New velocities
 New positions

 In a particle system (no rotation), simple:
 Conservation of momentum
 Coefficient of restitution



  

Broadphase (collision culling)

 Many implementations:
 Bounding boxes for all pairs
 Regular grid
 Quadtree/Octree
 BSP tree (binary space partitioning)
 Hierarchy of bounding shapes
 Sort and sweep algorithm



  

Intersection tests

 Point in circle

d < r

d > r



  

Intersection tests

 Point in circle
 Point in AABB

xmin < x < xmax

ymin < y < ymax



  

Intersection tests

 Point in circle
 Point in AABB
 Point in OBB ymin < ylocal < ymax

xmin < xlocal < xmax



  

Intersection tests

 Point in circle
 Point in AABB
 Point in OBB
 Point in convex polygon



  

Intersection tests

 Point in circle
 Point in AABB
 Point in OBB
 Point in convex polygon
 Point in concave polygon

odd = inside

1

1 2

even = outside



  

Intersection tests

 Point in circle
 Point in AABB
 Point in OBB
 Point in convex polygon
 Point in concave polygon
 Circle-circle d < r1 + r2



  

Intersection tests

 Point in circle
 Point in AABB
 Point in OBB
 Point in convex polygon
 Point in concave polygon
 Circle-circle
 AABB-AABB



  

Contact generation

 Information generally needed:
 Contact point
 Contact normal
 Amount of penetration

 For convex shapes in 2D, this isn't too hard
 Concave shapes more difficult
 3D much more difficult



  

Collision resolution

 Remove penetration



  

Collision resolution

 Remove penetration
 Calculate new velocities



  

Collision resolution

 Remove penetration
 Calculate new velocities

 Apply impulse at contact
 Conservation of momentum
 Coefficient of restitution
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 Coefficient of restitution
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Collision resolution
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 Includes friction



  

Collision resolution

 Remove penetration
 Calculate new velocities

 Apply impulse at contact
 Conservation of momentum
 Coefficient of restitution
 Includes rotation
 Includes friction
 All at once



  

Collision resolution

 So we can resolve each contact
 But solving one may make another worse
 Could solve simultaneously

 Build a massive LCP matrix
 But not in real-time

 Instead, iterate over contacts repeatedly
 Converge on global solution
 Can balance computation time against accuracy



  

Putting it all together

 Every frame:
 All bodies are moved simultaneously
 Pairs of potentially colliding bodies are detected
 Detailed contact information is generated
 The collision resolver is run

 Velocities are updated
 Penetration is removed

 All bodies are drawn at their new positions



  

Forget everything
I just said.



  

Forget everything I just said

 That's all fairly useless information
 You shouldn't make your own physics engine!
 Box2D already exists

 My perspective as a game developer
 A lot of this module is not that useful
 It's been done for you



  

Anatomy of a physics engine

Anyone can make games,
you should make games!

Alan Hazelden
alan@draknek.org

http://www.draknek.org/

http://www.draknek.org/


  

It's easy to make games

 The tools are amazing
 FlashPunk
 Unity
 Stencyl
 Twine
 Box2D



  

It's fun to make games

 What if...
 You made the snakes in Snake poop
 The paddles in Pong were shaped like continents
 Breakout blocks had to be kept onscreen
 Seeing an enemy made you run away
 Tetris blocks had an underground fight scene
 You had a deathmatch game with invisible players



  

It's fun to make games

 What if...
 You could only move one step per day
 2 players each had a microphone controlling speed
 You had to hold your breath while underwater
 A typing game gave increasingly morbid sentences
 A guitar hero game had only one button
 You had a videogame that didn't use the screen



  

Bear in mind

 Your first game will probably suck
 And that's okay!
 Make it terrible in a way that is awesome

 Don't be too ambitious
 Make the simplest possible thing
 Don't do everything from scratch

 Particles cover a multitude of sins
 So does screen shake!



  

MAKE GAMES



  

Questions?



  

I want to create a physics engine!

 Do you hate yourself?
 Do you have several years of your life to spare?
 Requirements:

 Excellent maths skills
 Excellent programming skills
 Excellent patience

 Incredibly rewarding
 Eventually



  

References

Real-Time Collision Detection
Christer Ericson



  

References

Game Physics
David Eberly

Game Physics Engine Development
Ian Millington



  

Online resources

 Erin Catto
 http://www.gphysics.com/
 Box2D Lite: http://box2d.org/

 Glenn Fiedler
 http://www.gaffer.org/game-physics

 Chris Hecker
 http://chrishecker.com/Rigid_Body_Dynamics

 Thomas Jakobsen
 http://www.teknikus.dk/tj/gdc2001.htm

http://www.gphysics.com/
http://box2d.org/
http://www.gaffer.org/game-physics
http://chrishecker.com/Rigid_Body_Dynamics
http://www.teknikus.dk/tj/gdc2001.htm


  

2D physics engines

 Box2D
 http://www.box2d.org/

 Chipmunk
 http://wiki.slembcke.net/main/published/Chipmunk

 Farseer
 http://www.codeplex.com/FarseerPhysics

 Large Polygon Collider
 http://www.draknek.org/physics/

http://www.box2d.org/
http://wiki.slembcke.net/main/published/Chipmunk
http://www.codeplex.com/FarseerPhysics
http://www.draknek.org/physics/


  

3D physics engines

 Bullet
 http://www.bulletphysics.com/

 Open Dynamics Engine
 http://www.ode.org/

 Havok
 http://www.havok.com/tryhavok

 PhysX
 https://developer.nvidia.com/physx

http://www.bulletphysics.com/
http://www.ode.org/
http://www.havok.com/tryhavok
https://developer.nvidia.com/physx
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